RGS proteins: identifying new GAPs in the understanding of blood pressure regulation and cardiovascular function.
نویسندگان
چکیده
Understanding the mechanisms that underlie BP (blood pressure) variation in humans and animal models may provide important clues for reducing the burden of uncontrolled hypertension in industrialized societies. High BP is often associated with increased signalling via G-protein-coupled receptors. Three members of the RGS (regulator of G-protein signalling) superfamily RGS2, RGS4 and RGS5 have been implicated in the attenuation of G-protein signalling pathways in vascular and cardiac myocytes, as well as cells of the kidney and autonomic nervous system. In the present review, we discuss the current state of knowledge regarding their differential expression and function in cardiovascular tissues, and the likelihood that one or more of these alleles are candidate hypertension genes. Together, findings from the studies described herein suggest that development of methods to modulate the expression and function of RGS proteins may be a possible strategy for the treatment and prevention of hypertension and cardiovascular disease.
منابع مشابه
Regulation of G Protein–Coupled Receptor Signaling By Scaffold Proteins G Protein–Coupled Receptor Oligomerization: Implications for G Protein Activation and Cell Signaling Multi-Tasking RGS Proteins in the Heart: The Next Therapeutic Target?
Regulator of G-protein–signaling (RGS) proteins play a key role in the regulation of G-protein–coupled receptor (GPCR) signaling. The characteristic hallmark of RGS proteins is a conserved 120-aa RGS region that confers on these proteins the ability to serve as GTPase-activating proteins (GAPs) for G proteins. Most RGS proteins can serve as GAPs for multiple isoforms of G and therefore have the...
متن کاملApelin: A promising therapeutic target? (Part 1)
Apelin is a recently discovered bioactive peptide, known to be an endogenous high-affinity ligandfor the previously orphan G protein-coupled receptor APJ. Apelin/APJ as a novel signaling pathwayhas been shown to play many crucial roles in cardiovascular function, blood pressure regulation, fluidhomeostasis, feeding behavior, obesity, type 2 diabetes mellitus, adipoinsular axis regulation, cellp...
متن کاملEffect of Reversible Inactivation of the Kolliker Fuse Nucleus on Basal Blood Pressure and Heart Rate in Anesthetized Rat
Introduction: Several supra spinal areas such as rostral ventrolateral medulla (RVLM) area are involved in basic cardiovascular regulation. The Kolliker— Fuse nucleus (KF) is located in pons and is heavily connected with RVLM. The cardiovascular effect of KF nucleus has been shown and it is suggested that KF is involved in sympathetic vasomotor tone and basic cardiovascular regulation. Therefor...
متن کاملThe effect of reversible inactivation of the central amygdaloid nucleus on cardiovascular responses in rats with renal hypertension
The brain rennin-angiotensin system (RAS) has an important role in the regulation of cardiovascular function. The aim of the present study was to determine the effect of reversible inactivation of the central amygdaloid nucleus (Ace) in normotensive rats and rats with renal hypertension (2K-1C). Two groups of normotensive rats were selected for this study. In one group, hypertension was induced...
متن کاملThe effect of reversible inactivation of the central amygdaloid nucleus on cardiovascular responses in rats with renal hypertension
The brain rennin-angiotensin system (RAS) has an important role in the regulation of cardiovascular function. The aim of the present study was to determine the effect of reversible inactivation of the central amygdaloid nucleus (Ace) in normotensive rats and rats with renal hypertension (2K-1C). Two groups of normotensive rats were selected for this study. In one group, hypertension was induced...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical science
دوره 116 5 شماره
صفحات -
تاریخ انتشار 2009